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A method is developed for determining any thin steady two-dimensional potential 
flow with free and/or rigid boundaries in the presence of gravity. The flow is 
divided into a number of parts and in each part the flow and its free boundaries 
are represented as asymptotic series in powers of the slenderness ratio of the 
stream. There are three basic flows, having two, one and no free boundaries and 
called jet flow, wall flow and channel flow, respectively. First the three expansions 
for these flows are found, extending results of Keller & Weitz (1952). They are 
called outer expansions to distinguish them from the inner expansions which 
apply near the ends of the stream or at the junction of two different types of flow. 
The inner and outer expansions must be matched at a junction to find how the 
emerging flow is related to the entering flow. This process can be continued to 
build up any complex flow involving thin streams. The method is illustrated in 
the case of a wall flow that leaves the wall to become a jet, which includes the 
case of a waterfall treated by Clarke (1965) in a similar way. In  part 2 (to be 
published) other inner expansions are found and matched to outer expansions, 
providing the ingredients for the construction of the solutions of many flow 
problems. 

1. Introduction 
To treat flows of thin streams with free boundaries, Keller & Weitz (1952, 

1957) represented the flows and the free boundaries as asymptotic series in 
powers of the slenderness ratio of the stream. This led to equations for the 
successive determination of the coefficients in the series, but it left various 
integration constants undetermined. The work of Clarke (1965), who treated 
a waterfall by matched asymptotic expansions, indicated that the constants 
could be found by matching these outer expansions to suitable inner expansions 
at the ends of the stream. We shall show that this can be done, and thus we shall 
develop a method for handling a large class of flows involving thin streams. 
Bentwich (1968), Clarke (1968) and Ackerberg (1968a, b )  have treated special 
flows by matched expansions using the reciprocal of the Froude number as the 
small parameter. 

For simplicity we consider only steady two-dimensional potential flows of 
thin streams. We call a part of the flow a jet if it has two free boundaries, a wall 
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flow if it has one free and one rigid boundary, and a channel flow if it has two 
rigid boundaries. In  $ 2  we formulate the method and in Q$3-5 we obtain the 
complete outer asymptotic expansion for each of these three types of flow, except 
for certain constants, thus extending the results of Keller & Weitz (1952). In  
$ 6 we find the inner expansion for the junction of a wall flow and a jet flow, and 
in Q 7 we match it to the outer expansions for wall and jet flows. In  this way we 
obtain the three expansions for any wall flow which becomes a jet or vice versa. 
The results for this problem reduce to those of Clarke (1965) when specialized 
to his case. 

There are two other basic inner expansions, one for the junction of a wall 
flow and a channel flow and the other for the junction of a channel flow and a jet. 
These and other inner expansions will be found in part 2 (to be published) and 
matched to the appropriate outer expansions. By using the three outer expansions 
and three or more inner expansions, it is possible to obtain the expansions for 
a great variety of flows involving thin streams. This can be done by analysing 
the flow as a sequence of parts, using the appropriate expansion for each part 
and matching it to the expansions of the adjoining parts. The possibility of 
analysing an elliptic problem in this way, as if it were hyperbolic, arises because 
the detailed influence of a junction decays exponentially with distance away 
from it divided by the slenderness ratio. Therefore it is negligible compared with 
the power series which our analysis includes. 

The leading term of each inner expansion is not influenced by gravity, and 
generally not by the curvature of the rigid boundaries either. Therefore it can 
be found explicitly by the hodograph method and conformal mapping of the 
Schwarz-Christoffel type. In fact each known solution which has been found in 
this way is the leading term in a certain inner expansion, so it has a wide range 
of applicability, and may be viewed as a canonical solution for the junction or 
orifice it represents. 

2. Formulation of the method 
A steady two-dimensional potential flow can be described by giving the 

complex position z’ = x’+iy‘ as an analytic function of the complex potential 
#‘+i@‘, where q5’ is the potential function and $‘ is the stream function. We 
suppose that the flow is bounded, at least in part, by the two streamlines $’ = 0 
and $’ = - &, where Q is the flux in the stream, Some portions of these stream- 
lines will be required to lie on fixed boundary curves in the z‘ plane and other 
portions of these streamlines will be free. On a fixed boundary curve, the real and 
imaginary parts of x’ must satisfy the equation of the curve. On a free portion 
of a streamline the constancy of the pressure and the Bernoulli equation yield 
[ dx’/d#’[ -2 + 2gy’ = U2,  where U is a constant with the dimensions of velocity 
and g is the acceleration of gravity. The problem of determining a flow is that 
of finding the function z‘($’+iy‘) satisfying a specified one of these condi- 
tions on each portion of the boundary, together with suitable conditions at  

It is convenient to let L denote a typical length along the stream and to 
$6’ = +a. 
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introduce h = Q/U, which denotes a typical width of the stream. Then E = h/L 
is the slenderness ratio, which is a measure of the thinness of the stream. We also 
introduce the dimensionless quantities Z ,  4, @ and y defined by 

2’ = Lz, $’ = LU$, = hU$, = 2gL/U2, E = h/L. (2.1) 

The Froude number of the flow is y-l, which measures the relative importance 
of gravitational and inertial forces. In  terms of these variables the boundary 
conditions become 

Idz/d$l2 = (1 - y Im z)-1 on a free streamline, (2.2) 

Im z = q(Re z )  on a fixed boundary. (2.3) 

Here y = q(x) is the given equation of the fixed boundary. 
The flow is now described by the analytic function z(q5 + ie@, E ) ,  which depends 

explicitly on E ,  and which is defined in the strip 0 @ 2 - 1 of the 9, $ plane. 
We assume that each of the bounding streamlines is divided into a finite number 
of intervals in each of which either (2.2) or (2.3) holds, with a different function 
qi given in each interval where (2.3) holds. Furthermore, we assume that each 
of these functions qi is infinitely differentiable, so that if a given rigid boundary 
has discontinuities in its derivatives each portion between discontinuities is 
viewed as a separate interval. Let the combined set of end points of the intervals 
on the two bounding streamlines be denoted by - co = $,,, $1, . . . , $Nil = + co with 
q$ < q5iil, j = 1, . .., N - 1. One of the finite q5j can be chosen arbitrarily by 
choosing the origin of 9 and the other N - 1 must be determined. Therefore they 
will depend upon E ,  so we shall write 9r = q5i(~).  

In  each of the intervals into which the strip is divided by the points dj(s) just 
one of the boundary conditions (2.2) or (2.3) applies on each of the bounding 
streamlines. Thus there are three kinds of interval, which have respectively two, 
one or no free streamlines. If the length of the interval remains finite as E tends 
to zero, we call these flows respectively jet, wall and channel flow. For each of 
them, we assume that, as E tends to zero, z has an asymptotic power series ex- 
pansion in e which we write in the form 

m 

z (9  + is$, 4 c. zn(d +is$) E”, 9jic4 < 9 < $j+l(E). (2.4) 
n=O 

The expansion coefficients z, depend upon j, but we shall not indicate that 
explicitly. 

We call the expansions (2.4) ‘outer’ expansions to distinguish them from the 
‘inner’ expansions which hold in the neighbourhoods of the points $i(~) where 
two different flows join together. In  the z plane the junctions occur at 

Z [ $ j ( E )  + i+, €1. 

95” = {9 - 9j(O)}/E = {$’ - 9;(o)}/hc 

To write the inner expansion near #i we introduce new variables $” and z” 
defined by 

} (2.5) z”($”+~$,E)  = {~-z[$j(O), O ] ) / E  = { Z ’ - Z ’ [ $ ; ( ~ ) ,  O]}/h. 
27-2 
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Here q5; = LU&. In  terms of these variables the flow is desoribed by an analytic 
function x x  (q5" + i$, E )  defined in the strip - 1 < $ < 0 and the boundary con- 
ditions (2.2) and (2.3) become 

(2.6) 

(2.7) 

Idz"/dq5"12 = (1 -EyImx"-yImz[q5j(0), 0])-1 on a free streamline, 

eImx"+Imz[q5j(0), 01 = ~(ERRez" +Rex[&(O), 01) on a fixed boundary. 

We assume that as E tends to zero zn has the asymptotic expansion 
W 

x"(q5" + i$, E )  - x x i ( # "  + i+) En. (2-8) 

We call this an 'inner' expansion. 
The coefficients zn in the three kinds of outer expansion will be determined 

in $0 3-5. The coefficients 2: for one kind of inner expansion will be found in $6,  
and for various other kinds of inner expansion they will be found in part 2. 
Upon matching the successive outer and inner expansions, the full expansion for 
any flow involving a thin stream can be found. This will be illustrated in $ 7  for 
a wall flow which leaves the wall as a jet. 

n=O 

3. Outer expansion for a jet (flow with two free boundaries) 

zn(q5 + i ~ $ )  in powers of E ,  and obtain 
To determine the x, in (2.4) for a jet, we first rewrite (2.4) by expanding 

49 + +, 4 - 2 hs(q5, $) f?* (3.1) 
s=O 

Here hs is defined by 
Z p q q 5 )  (i$)s-n 

hS(q579) = x - 
,=O (8-n)! * 

(3.2) 

We now substitute (3.1) into (2.2) and use the binomial theorem to obtain, 
withIc, =- 0, 

9! 
x [l-yImxo(q5)]-j-1 Z Imhki. (3.3) 

Here and elsewhere an overbar indicates a complex conjugate. Upon equating 
coefficients of powers of E in (3.3) we obtain an infinite set of equations for the 
x, = xn+iyn. We can write these equations as follows, after eliminating the hs 
by means of (3.2) : 

klf ...+ kj=s i=l 

8 s -k  k x 
k=O n=O m=O 

c ( - 1)k-m (i$)s-n-m Z(~-k--n+l)~fm+l)/(~ - k - n)! (k - m)! n 

8 j [&(kt-l)l ( -  1)r92r+1 
( 2 r f l )  

xkj- 2r- 1 = (1 - yyo)-l s,, + x yj( 1 - yyo)-j-l c 
j=1 kl+ ...+ k j=s  e( 20 (2 r f  I)! 

The symbol [a] denotes the greatest integer not exceeding a. 
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On $ = 0 equation (3.4) simplifies to 

(8 = 0,1, ...), (3.5) 

where a prime indicates differentiation with respect to q5. We can write (3.5) 
more explicitly in the following form : 

x;2 + y;2 = (1 - y y p ,  (3-6) 

2(x;x~+y;yL)-y(l-yyo)-2ys = gs (s = 1,2, ...). (3.7) 

gs = ~ y j ( 1 - y y ~ ) - + ~  E KI y k f -  I: (&&+~i -~y i )  (8 = 1,2, .--) .  (3.8) 

Here gs is defined by 
8 i 8-  1 

j = 2  kl+ ...+ k j = s i = l  k = l  

We see from (3.8) that g8 does not involve either xI or yj with j 2 8 .  Explicitly, 
the first three g, are given by 

91 = 0, (3.9) 

9 3  = 2y2U - (3.1 1) 

g, = ~~(l-yy~)-~y/q--X;~-yX;~, (3.10) 

Y ~ Y ~  + y3(1 - wOF4 y': - 2(& 4 + y4 d) .  
The line 1c. = - 1 is also a free streamline on which (3.4) holds. By subtracting 

(3.12) 

(3.5) from (3.4) and setting $ = - 1 we obtain in this case 

x; y; - y;x; + *y ( 1 - yyo)-2 x; = 0, 

x;y: - y&i + &y( 1 - yyo)-2xL + y;Ix: - y; + y2( 1 - yy0)-3 x;ys = f 8  

(S = 1,2, ...). (3.13) 
In  (3.13) f ,  is defined by 

8 8-k k 

k=O n=o m=O 
(n,m)+(s, 8- 1) 

n+m*s 

2fs, = - 2 x 2 (- l)k-m(-i)s-n~~(s--k-~+l)-(k-~+l)/(S-k-n)!(~-~)! 1E 2, 

8 

Yki-27 ) + 3'=1 E yq 1 - yyo)-+l kl+..??kj=s[drl ( rZ0 3). + I)! Xki-27-1 r=o (2r)! 

I [B(kc-l)l( - 1)"1 t@d( - 1)' 
(27+1) +Z (27) 

(kL>O) 

- f I  ykj -yyo)-sx;ys-l (s- I = 1,2, ...). (3.14) 
t=1 

Neither xj nor yI with j 2 s occur infs. Explicitly, the first two f, are given by 

f 1 =  kr2( l -~~o)-49  (3.15) 

2f2 = x;x: + y; y; - +xx$y; + +x; y& ytx; +x: y; +x:x; + yt  y; 

- 2(x';x: + y; y: + y;x; - x';y;) + y( 1 - yyo)-2 (8x11' - iy;) + 2y2( 1 - 
x (.Ax; + 4 Y W l -  4 Y 1 -  4YlY;;) + Y3(1 - 
x ( - [x;l" + 3 w  Y1- 3x;rY1l2). (3.16) 
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For the jet flow, (3.6), (3.7), (3.12) and (3.13) all apply. Theleading coefficients 
xo and yo satisfy the nonlinear first- and second-order ordinary differential 
equations (3.6) and (3.12), in which q5 is the independent variable. For s 2 1 
the coefficients xs and ys satisfy the linear first- and second-order ordinary dif- 
ferential equations (3.7) and (3.13). These equations can be solved recursively 
starting with s = 1 because the right sides involve only the xj and yj with j < s. 
Thus apart from constants of integration, equations (3.6), (3.7) (3.12) and (3.13) 
determine the coefficients z, = xn+iy, in the outer expansion (3.1) for a jet. 

Let us consider the solution xo($), yo($) of (3.6) and (3.12) which satisfies the 
initial conditions 

xo(0) = 0, yo(0) = u < y-1, dyo(0)/dxo = tanp. (3.17) 

If p $I -I- $71, the solution is given by the equations 

yo = u+x,tanp-bx& (3.18) 

(3.19) q5 = 2(b/y)* [( 1 - ya) xo - &yxt tan ,8 + iybx;]. 

Here b is defined by 
b = ysec2fl/4(1-yu). (3.20) 

From (3.18) we see that the curve xo(q5), yo($) is a parabola, as we expect, unless 
y = 0, in which case it is a straight line. If /3 = -I- &rr and yi+ 0 the solution is 

x, = 0, (3.21) 

(3.22) yo = y-1- y-1[ T #y$ + (1 - yu)q+. 

Ifp = &&and y = 0 thenx, = Oand yo =a+#. 

yields x;($) =+ 0. Therefore we can solve (3.7) for xi to obtain 
To find xs($) and ys(q5) for s B 1 in the case p f k i n ,  we note that (3.19) 

gs Y P  -YYo)-2Ys YAY: 
2x0 2x; x; - x =y+ (3.23) 

By using (3.18) and (3.6) we can rewrite (3.23) as 

xi = gs/2x; + 2b(x0ys)’ - y: tan P. (3.24) 

Integration of (3.24) yields 

x,($) = ~ ~ + 2 b x ~ y ~ + ( ( a ~ - y ~ ) t a n p +  -d$ ( s =  1,2,  ...). (3.25) 

Here c, = xs(0) and us = ys(0). Now we use (3.24) to eliminate xsfrom (3.13) and 
obtain 

so” 2; 
y:-=y;+,(1-yyo)-4ys Y3 = F,. 

1 - YYO 

The quantity F, is defined by 

(3.26) 

(3.27) 
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The general solution of the homogeneous form of (3.26) is, with A, and B, 
arbitrary constants, 

(3.28) 

Thus the general solution of (3.26) is 

(S = 1,2, ...). (3.29) 

In the special case y = 0, equation (3.29) can be simplified to 

c 
y,($) = A,+B,$+S ($-$‘)F,($’)d$’ (8 = L 2 ,  ... 1, (y = 0). (3.30) 

0 

By using (3.29) or (3.30) in (3.25) we obtain xs(q5). 
For s = 1, equations (3.12), (3.15) and (3.27) yield 

4 = b 2 ( y / V  ( 1  - Y Y ~ ) - ~ .  (3.31) 

Then (3.29) leads to the following result, which also follows directly from (3.26): 

Now (3.25) yields 

XI($) = X l ( 0 )  + 2bxo($) Yl($) + [Yl(O) -y,($)ltan/?. (3.33) 

Further x, and ys can be found in the same way. In  the special case y = 0 it follows 
by induction that fs = 0 and gs = constant for each s. As a consequence (3.25) 
and (3.30) show that xs and y, are linear functions of $ for each s. 

Later we shall need A ,  and B, in terms of y,(O) and yi(0). By setting $ = 0 in 
(3.32) and in the differentiated form of (3.32) and solving the resulting equations, 
we obtain 

A,  = sea/?( 1 -?a)# (1 - 2 sinzp) yi(0) - 2y cos /?sin /? 
x [y,(o) - sec/?/4(1 -ya)*], (3.34) 

(3.35) B, = 2sin,8(1 -ya)+y~(0)+y(l-~sin2/?)[y,(O)-sec/3/4(1 -yu)’]. 

When /? = kin, equation (3.21) yields X; = 0 so (3.7) and (3.13) become 

?/; T rvo)-+ 9 s  = k 8(1- YYo)& gs, (3.36) 

x: T y( 1 - yy,)d xi = T (1 - yy,)*fs. (3.37) 

The solutions of  (3.36) for which y,(O) = a,, and of (3.37) for which x,(O) = c, and 
xi(0) = b,, are 
Y,($) = -?a)* [(I -yaP 7 W l 4  



For s = 1, equation (3.9) shows that g1 = 0 and (3.18) gives fl. Then (3.38) 

y,(4) = ad1 - 74-* -?a)% k #y$1-*, (3.40) 

and (3.39) become 

XI(#) = ~ l + 2 ~ , ( ~ - y ~ ) y - 1 [ ( l - y ~ ) ~ - ( ~ ~ y y , ) ~ l F ~ ( ~ - y y , ) - ~  
T &(l-yy,)*(l-ya)-l+ (l-ya)-t. (3.41) 

4. Outer expansion for a wall flow (one free and one fixed boundary) 
We next treat a wall flow with a free boundary @ = 0 and a fixed boundary 

y = ~ ( x )  on which @ = - 1. The results of 8 3 up to  (3.11) apply in the present 
case, since they involve only the free boundary @ = 0. For the fixed boundary 
we have 

Imz=r (Rez )  on @=-1 .  (4.1) 

By using (3.1) in (4.1) we obtain 

cc 

xESImhs($, - 1) 7 [ 5 EkRehk($, -I)]. (4.2) 
s=o k=O 

We now expand the right side of (4.2) in powers of e and note that Re h, = xo($). 
Then (4.2) becomes, with ki > 0, 

Equating coefficients of eS in (4.3) yields 

(s = 0,1, ...). (4.4) 
Prom (3.2) we find that 

By using (4.5) and (4.6) in (4.4), we obtain a system of equations involving xs(+) 
and ys(q5). These equations together with (3.6) and (3.7) can be used for the 
successive determination of the xs and ys. 

For s = 0, equation (4.4) becomes 

Yo = r(xo)* (4.7) 
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Upon using (4.7) in (3.6), we find that zo($) must satisfy the first-order ordinary 
differential equation 

x.($) = [{I + (r ’ (Xo))21P -3/r(xo)lI-4. (4.8) 

When xo($) is found from (4.8), then (4.7) yields yo($). 
For s 2 1, equation (4.4) can be written as follows: 

Ys = r’(x0) xs + Es. 
Here Es is defined by 

(4.9) 

x z Rehkl($, - 1)  ... Rehkj($, - l)-q’(xo)xs. (4.10) 

It is important to observe that E, does not involve xj or yj withj  2 s, the terms 
in xs and ys having been written explicitly in (4.9). We now use (4.9) to eliminate 
ys and 9: from (3.7) and (4.7) to eliminate yo. Then (3.7) becomes 

kl+ . . . +k.j = 8 

xi + ax, = p,. 
Here a! and p, are defined by 

(4.11) 

9 s  + Y(1- wo)-2Es  - 2Y.E; 
= 2x.{1+ [7’(xo)]Z} 

and 

The solution of (4.11) is 

Then ys($) is given by (4.9). 
For s = 1 we obtain from (4.14) and (4.9), after some calculation, 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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5. Outer expansion for a channel flow (two fixed boundaries) 
Finally we shall determine the outer expansion for a channel flow bounded by 

the two fixed boundaries y = ~ ( x ) ,  on which 9 = - 1, and y = q(x)  +e[(x), on 
which 9 = 0. The formulation of Q 3 applies to this case up to (3.2) and the results 
of Q 4 apply up to (4. lo), except for (4.8). We now impose the condition 

Imz = r(Rez)+sc(Rez) on $ = 0. (5.1) 

Then as in $4, we use (3.1) in (5.1), expand the right side in powers of E and 
equate coefficients of like powers of E to obtain 

+ &1C(xo) + '-' c - cO"(xO) 2 Rehkl(q5, 0)  ... Reh, (q5,O) ( s  = 0, 1, ...). 

(5.2) 
j=1  j! kl+ ...+ kj=s-1  

Imhs(q5,O) = Imzs(4) =?/A#)* (5.4) 

For s = 0 equations (5.2) and (5.4) yield yo = ~ ( x , ) ,  which is just the result (4.7) 
obtained from (4.4) with s = 0. Thus both boundary conditions yield (4.7) for 
s = 0. For s 2 1, equation (5.2) becomes, when (5.3) and (5.4) are used in it, 

Ys - r'(x0) "s - (1 - 4 1 )  [6r"(xo) Xl(2 - &2) + 5'(xo)I xs-1- 4 1  axe) = Gs-1 
(s = 1,2,  ...). (5 .5)  

Here Gs-l is defined by 

'-' c~)(xO) C xkl...xk. (8 = 1,2, ...). (5.6) 
.I 

+ c -  
j = 2  j! k,+ ...+ k j = s - l  

We note that Gs-l involves only xi and yi withj < s - 2 and that Go = GI = 0. 
Equations (5.5) and (4.9) can be used to determine the xs and ys successively. 

To determine them we should subtract (5.5) from (4.9), but we observe that x, 
and ys cancel. Therefore we first write out the terms in x,-~ and ys-l in (4.9) 
explicitly and obtain 

Ys - T'(Z0) xs - xi-1- T'("0)  &-l - it 1 - %I) r"(x0) t(2 - 4 2 )  x1+ ~Y;lxs-l = Hs-1, 

(5.7) 
where H,-,, which involves only xj and yj with j < s - 2, is given by 

Now we subtract (5.5) from (5.7) and replace s by s+ I to obtain 

r'(x0) Yi + 4 + (1  - %o) Cr"(x0) YA - 6'(x0)1 xs - 40C@o)  = Gs - H, 
( s  = O , l ,  ... ). (5.9) 

Equations (5.9) and (5.5) can be used to determine the x, and ys. 
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For s = 0, equation (5.9) becomes 

r' (x0)  9; + s - !3zo) = 0. (5.10) 

By using (4.7) for yo in (5.10), we obtain 

4 = Y@O) (1 + [r'(xo)l2I-l. (5.11) 

For s 2 1 we use (4.7) for yo and (5.7) for y, in (5.9) with the result 

zL + CX, = {I + [7'(x&]2)-1 {G, - H, - ~ ' ( x o )  Bi-1- ~ ' ( x o )  

x {?'(Zo) $4-1 + +(I - $sl) ?"(Xo) "2 - 4 2 )  $1 + 2YAl Xs-1 4- s-1)'). (5.12) 

Here u is defined by 

(8 = 1,2,  ...). (5.14) 

Then y,(#) for s > 1 is determined by (5.7), which completes the determination of 
the outer expansion in this case, except for the oonstants of integration. 

For s = 1 we can evaluate (5.14) for q ( 4 )  by using (4.10) for E, in (5.8) to 
obtain H, and (5.6) for a,. After some calculation we obtain 

Then (5.7) and (5.15) yield 

6. Inner expansion for a wall flow which becomes a jet 
We have now found the three kinds of outer expansions. We shall next find 

the inner expansion for a wall flow which leaves the wall and becomes a jet. 
We choose the origin of 4 at the point where the flow leaves the wall, so that 
q51 = 0, and we also choose this point as the origin in the x plane, so that ~(0) = 0. 
Therefore we have a wall flow €or 4 -= 0. To find the coefficients 2: in the inner 
expansion (2.8) we must use (2.6) and (2.7). In  the present case these conditions 
become 

} (6.1) 
Idz"ld$"12= (l-eyImz")-l on @ = 0, -m < 4" < +m 

and on $ = - 1  > qY > 0, 

ey" = ?(ex"), X" < 0 on @ = - 1, 4'' < 0. (6.2) 

From now on we shall omit the primes from z" and #", and use primes to denote 
derivatives . 
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We shall seek an expansion for z of the form 
m 

Z ( $ + i $ , E )  N c z n ( $ + i $ ) E n .  
n=O 

Upon using (6.3) in (6.1) and expanding both sides we obtain on the free stream- 
lines, with n, >, 0, 

2 Ek c (&-jX;+y;-jyj) ' - l +  $ 8 $ $ c yn,...yn. (6.4) 
w k  

k=O j = O  k = l  j = 1  n,f...+nj=k--) 

Equating coefficients of €0 in (6.4) yields, on free streamlines, 

x;2+ y;2 = 1. (6.5) 

The equation obtained by equating coefficients of ek in (6.4), valid on free 
streamlines, can be written in the form 

On the fixed boundary (6.2) and (6.3) yield 

Equating coefficients of &+l in (6.7) yields on the fixed boundary $ = - 1 , $  < 0 

k + l  
(k = 0, 1, ...). (6.8) yk-y ' (0)xk = R, = c - c 

j = 2  31 n,+ ...+ 
The right sides of (6.6) and (6.8), denoted Jk and K ,  respectively, do not involve 
xs or ys with s 2 k, so these equations can be used to find the x, and yk suc- 
cessively. Each zk($ +i$) must be analytic in the strip - 1 < $ < 0 and must 
satisfy (6.5) if k = 0 or (6.6) if k =I= 0 on the free streamlines and (6.8) on the fixed 
boundary. In  addition zk( - i )  = 0 in order that the origin be at g5 = 0, $ = - 1. 

To find zo we set k = 0 in (6.8) and obtain 

yo-y'(0)xo = 0 on $ = - 1,g5 < 0. (6.9) 

Both (6.5) and (6.9) are satisfied identically by the linear function 

zo($+i$) = eis($+i$+i) ,  (6.10) 

where 8 = tan-ly'(0). (6.11) 

In addition zo = 0 at $ = 0, $ = - 1 as we require, so we shall choose (6.10) 
for zo. 

1, it is convenient to introduce wk defhed by To find zk, k 
wk = e-iezk. (6.12) 

Then (6.6) and (6.8) can be written, on free and fixed streamlines respectively, as 

Rew;=Jk, k = l , 2  ,..., on $ = O , - l , $ > O .  (6.13) 

Imwk=Kkcos8, k = 1 , 2  ,..., on $=-1,q5<0.  (6.14) 
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Differentiation of (6.14) with respect to $ yields 

Imw;=K;cosO, k = 1 , 2  ,..., on $ = - 1 , $ < O .  (6.15) 

The problem of finding a function wi analytic in the strip - 1 d $ < 0, 
satisfying (6.13) and (6.15) on the boundaries, is a straightforward one. The 
solution is 

Here pk(v)  and qk(v) are defined by 

p k p )  = c o s e ~ i [ - ~ - l i ~ ~ ( i + ~ 2 ) ,  - 11, (6.17) 

Jk[-n-llog(l-a2), - 11 for 0 Q a < 1, 
Jk[ -n-llog (a2- 1), 01 for a > 1. 

Integrating (6.16) and then using (6.12) yields 

This completes the determination of the inner expansion. 

K ;  = q"(0)xocos8. Therefore (6.19) leads to 
For k = 1, equation (6.6) yields J1 = Qyyo and (6.8) yields K ,  = gq"(0) xg so 

From (6.20) the asymptotic expansions of x1 as g5 -+ f 00 are given by 

a 4  + w - iy ei2e eie 
4 ( $ + i ~ ) ~ + ~ { i n ~ e ~ + c o s ~ l o g 4 ( 2 ~ " ( 0 ) c o s 2 ~ + y ) )  ($+i$) 

+c,+O(e-n($+f@)) as $++00, (6.21) 

+dl+O(e*n($+i@)) as q5 -+-a. (6.22) 1 
Here c, and d, are certain specific constants whose values we shall not use. 

It is to be noted that the solutions (6.10) for zo and (6.19) for zk are particular 
ones which have the slowest rates of growth at infinity. The correctness of these 
choices will be verified when the inner expansion, constructed from these solu- 
tions, is matched with the outer expansions. 

7. Matching the inner and outer expansions 
We shall now complete the solution of the problem considered in 3 6, namely 

the case of a wall flow which leaves the wall to become a jet. This flow is repre- 
sented by three asymptotic expansions - the outer expansions for a wall flow in 
$ 4 and for a jet flow in $ 3, and the inner expansion in $6. Each of the outer 
expansions contains arbitrary constants but those in the inner expansion have 
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been chosen. We shall determine these constants by matching each of the outer 
expansions to the inner expansion. 

Before carrying out the matching, we note that the point of detaohment is 
arbitrary, since a flow can be found which leaves the wall at any point, provided 
that the resulting jet does not hit the wall immediately. This condition is met 
if the wall ends at the point of detachment, or if its curvature there exceeds that 
of the jet. It is also clear that, in the reverse flow, a jet can be found which touches 
the wall at  any point and then flows along it. In  view of this arbitrariness, we 
have chosen the point of detachment to  be the origin for all values of E .  The 
location of the point where a real flow detaches depends upon other considera- 
tions, such as stability. 

In  the region qi < 0 upstream from the point of detachment, the outer ex- 
pansion (2.4) holds with z, = zs+iys given by (4.7) and (4.8) for s = 0 and by 
(4.9) and (4.14) for s 2 1. In  the region qi > 0 downstream from the point of 
detachment (2.4) holds with zs given by (3.18) and (3.19) for s = 0 and by (3.25) 
and (3.29) for s 2 I .  In  the neighbourhood of qi = 0, expansion (2.8) holds with 
zs  given by (6.10) for I% = 0 and by (6.19) for k 2 I .  In  the definitions of $"and 
z", qij(0) = 0 is the value of qi a t  the point of detachment and z[qij(0), 01 = 0 is 
the value of z at this point. Therefore from (2.5) we have 

z(q5 + ie$, 6) = ez"(qi" + ie@, E )  and qi = €4". 
Upon replacing qi" by qi/e in the argument of z", we obtain 

Z ( q i + i € @ , € )  = € Z " ( q i / € + i $ , € ) .  (7.1) 

By using (2.4) for z and (2.8) for z" in (7.1), we get 
W co c EmZn( qi + i€$) N E c €nz:( qi/€ + i@) . 

n=O n=O 
(7.2) 

On the left side of (7.2) we must use the z, for the wall flow for q5 < 0 and those for 
the jet flow for qi > 0. 

It is convenient to  set qi + ie$ = € 2 ~ .  Then for a fixed value of x the argument 
of zn in (7.2) tends to zero as e tends to zero while the argument of zL(e-4~) can 
be represented by its asymptotic expansion at infinity. Thus if we retain terms 
of order less than e2, we can mite  for the left side of (7.2) 

Z,(€qy) + E X l ( € ~ X )  + 0(€2) = Z,(O) + &z;(O) + *€3x22;(0) 

+€z,(o)+E3xz;(o) +O(E2). (7.3) 

For the right side of (7.2) we can mite  the upstream expansion (q5 < 0)  by using 
(5.10) for z i  and (6.22) for 2;. This yields 

ezZ;I(e-&x) + e2x1(e-$y) + O(e2) = € 2 ~  eis + ei eie + re8 2 x  2 eie 

x [~ysin8+irJ"(O)cos38]+~~3~Yei2~+0(~2) ,  qi < 0. (7.4) 

Similarly, the downstream expansion (qi > 0 )  of the right side of (7.2) is obtained 
by using (6.10) for z6 and (6.21) for 2:: 

x [i~yei~+(2~"(0)cos~+y)cos810g4]+0(~2), qi > 0, (7.5) 
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The validity of (7 .4 )  and (7.5) depends upon the fact that 

z;($"+i+) = O(lq5"]fi+l) as lq5"l -+a. (7.6) 

This can be proved by induction, based on a careful examination of Jk and K,, 
which enter into the expression for .;I.. Then from (7 .6 )  we have, for fixed x, 

€fi+'Z;(& = O(&+l)). (7.7) 

Thus for n 2 [ 2 ,  the terms of the form (7 .7)  omitted from (7 .4)  and (7 .5)  are all 

Let us now equate (7 .3 )  for q5 < 0 to (7.4), which requires that the upstream 
values of zo and z1 be used in (7 .3 ) .  Equating coefficients of like powers of E yields 

(7.8) 

O ( 9 ) .  

I zo(0) = 0, S ( 0 )  = eie, zl(0) = ie", 
z,"(O) = ei'j"+ysinB+ir"(O)cos36'], z;(O) = +yei20. 

From the first and third of these equations we obtain 

xo(0) = 0, xl(0) = -sine. (7.9) 

These two values enable us to determine uniquely the wall-flow values of xo($) 
from (4 .8 )  and xl($) from (4 .15) .  Then yo is given by (4 .7 )  and y1 by (4 .16) .  The 
other conditions in (7.9) are then automatically satisfied, which is a check on 
our method and on our oalculations. 

Finally we must equate (7 .3 )  for $ > 0 to ( 7 4 ,  using the jet-flow values of zo 
and x1 in (7.3). Equating like powers of e yields 

} (7.10) 
zo(0) = 0,  & ( O )  = eie, zl(0) = ieie, z,"(O) = -4iyei28, 

z;(O) = eis [ inye ie+{2q"(0)  cosB+y}cos Olog4]/2ni. 

By using the first and second of (7.10) together with (3 .17)  we find that 

a = O ,  p=S. (7.11) 

These conditions determine x,, and yo uniquely. Similarly, the third and last of 
(7 .10)  yield xl(0), y,(O), x;(O) and y;(O), which suffice to determine z1 and y1 
uniquely. The fourth condition in (7.10) is then satisfied automatically. In  
a similar way the constants in all the z, with n >, 2 can be found in both the jet 
and the wall flows. 

We shall now summarize our results for this example. For q5 < 0 the wall flow 
is given by 

+O(e2) ,  q5 < 0. (7.12) 

Here xo = xO(q5+ie+), where xo(q5) is the solution of (3 .8)  with xo(0) = 0, and 
x1(q5) is given by (4.15) with q50 = 0 and xl(0) = -sine. Near the point of de- 
tachment 1q51 < 1, z is given by 

x = e i e ( ~ + i , + + + i s ) + E 2 z l ( ~ / s + i ~ ) + O ( s 3 ) ,  Iq5I < 1. (7 .13)  

Here x1 is given by (6.20). 
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For q5 > 0 the jet flow is given by 

x = xo(q5+ie$) +i[xotan8-~x~ysec28]+e[&,ysec2B-tane+i] 

x y,($+k$)+o(~~).  (7.14) 

In this case xJq5 +ie$) is determined by (3.19) with a = 0 and = 8 while 
(3.33) has been used for xl. The initial values of xl and yl have been obtained 
from (7.10). Pinally from (3.32), (3.34) and (3.35), y1 is found to be 

cos2 6 
sin 26 + -log 2[2qrr(0) cos 8 + y ]  n 

Y ""11 [ xo tan 6 - - see2 6 4  + - Y 
4 

(7.15) 

In  the waterfall problem considered by Clarke (1965), q(x) E 0. In  that case 
the results (7.12)-(7.15) reduce to his. 
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